This paper deals with the problem of informed source separation (ISS), where the sources are accessible during the so-called \textit{encoding} stage. Previous works computed side-information during the encoding stage and source separation models were designed to utilize the side-information to improve the separation performance. In contrast, in this work, we improve the performance of a pretrained separation model that does not use any side-information. To this end, we propose to adopt an adversarial attack for the opposite purpose, i.e., rather than computing the perturbation to degrade the separation, we compute an imperceptible perturbation called amicable noise to improve the separation. Experimental results show that the proposed approach selectively improves the performance of the targeted separation model by 2.23 dB on average and is robust to signal compression. Moreover, we propose multi-model multi-purpose learning that control the effect of the perturbation on different models individually.


翻译:本文涉及知情源分离(ISS)的问题,在所谓的“textit{encoding}”阶段,源源分离(ISS)是可以获得的。以前的作品计算编码阶段和源分离模型的侧边信息是为了利用侧信息来改进分离性能。与此形成对照的是,在这项工作中,我们改进了未使用任何侧信息的预先训练的分离模型的性能。为此,我们提议为相反的目的,即我们建议采用对抗性攻击,而不是计算干扰来降低分离性,我们计算一种不可想象的扰动,称为友好噪音来改进分离。实验结果显示,拟议的方法有选择地提高了目标分离模型的性能,平均为2.23 dB,并且能够发出压缩信号。此外,我们提议采用多模式多功能学习,以控制扰动对不同模型的影响。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员