Discovering frequent trends in time series is a critical task in data mining. Recently, order-preserving matching was proposed to find all occurrences of a pattern in a time series, where the pattern is a relative order (regarded as a trend) and an occurrence is a sub-time series whose relative order coincides with the pattern. Inspired by the order-preserving matching, the existing order-preserving pattern (OPP) mining algorithm employs order-preserving matching to calculate the support, which leads to low efficiency. To address this deficiency, this paper proposes an algorithm called efficient frequent OPP miner (EFO-Miner) to find all frequent OPPs. EFO-Miner is composed of four parts: a pattern fusion strategy to generate candidate patterns, a matching process for the results of sub-patterns to calculate the support of super-patterns, a screening strategy to dynamically reduce the size of prefix and suffix arrays, and a pruning strategy to further dynamically prune candidate patterns. Moreover, this paper explores the order-preserving rule (OPR) mining and proposes an algorithm called OPR-Miner to discover strong rules from all frequent OPPs using EFO-Miner. Experimental results verify that OPR-Miner gives better performance than other competitive algorithms. More importantly, clustering and classification experiments further validate that OPR-Miner achieves good performance.
翻译:发现时间序列中经常出现的趋势是数据开采中的一项关键任务。 最近, 提议在时间序列中进行订单保存匹配, 以查找所有模式出现的情况, 在时间序列中, 模式是一个相对顺序( 被视为趋势), 发生的时间序列是一个子时间序列, 其相对顺序与模式相吻合。 受订单保存匹配的启发, 现有的订单保存模式( OPP) 采矿算法使用订单保存匹配来计算支持, 从而导致效率低下 。 为了解决这一缺陷, 本文建议了一种名为 高效频繁OPP 矿工( OPF- Miner) 的算法, 以寻找所有经常的OPP 。 EFO- Miner 由四个部分组成: 生成候选模式的模式融合战略, 匹配亚型模式结果以计算超级板块支持的匹配程序, 筛选战略以动态地缩小前缀和后缀阵列的规模, 以及进一步动态地调整候选模式的运行战略。 此外, 本文还探讨了更强有力的 保存规则( OPR- Miner ) 采矿, 并提议一个叫为更具有竞争力的 OPR- Vin 的运行, 更高级的运行 的运行 的运行,, 最终的演算法, 将实现更好的 更佳的运行的运行 。