Gaussian elimination with partial pivoting (GEPP) remains the most common method to solve dense linear systems. Each GEPP step uses a row transposition pivot movement if needed to ensure the leading pivot entry is maximal in magnitude for the leading column of the remaining untriangularized subsystem. We will use theoretical and numerical approaches to study how often this pivot movement is needed. We provide full distributional descriptions for the number of pivot movements needed using GEPP using particular Haar random ensembles, as well as compare these models to other common transformations from randomized numerical linear algebra. Additionally, we introduce new random ensembles with fixed pivot movement counts and fixed sparsity, $\alpha$. Experiments estimating the empirical spectral density (ESD) of these random ensembles leads to a new conjecture on a universality class of random matrices with fixed sparsity whose scaled ESD converges to a measure on the complex unit disk that depends on $\alpha$ and is an interpolation of the uniform measure on the unit disk and the Dirac measure at the origin.
翻译:以部分支流( GEPPP) 消除高频仍然是解决稠密线性系统的最常用方法。 每个 GEPP 步骤都使用一行转换式轴向运动, 如果需要的话, 以确保主要的轴向条目的最大值是剩余未对角化子系统领先柱体的最大值。 我们将使用理论和数字方法研究这种支流运动的频率。 我们用特定的Haar随机团团( GEPPP ) 来提供对使用 GEPPP 所需的支流运动数量的全面分布描述, 并将这些模型与随机数字直线性代数的其他常见变换进行比较。 此外, 我们引入新的随机随机组合, 以固定的轴向运动计数和固定宽度( $\ alpha$ ) 。 实验估计这些随机团团的实验性光谱密度( ESD) 导致对一个通用的随机矩阵的新的预测, 其缩放的 ESDD 与取决于 $\ alpha 的复杂单位磁盘的测量标准相交汇, 。