Domain Adaptation is a technique to address the lack of massive amounts of labeled data in unseen environments. Unsupervised domain adaptation is proposed to adapt a model to new modalities using solely labeled source data and unlabeled target domain data. Though many image-spaces domain adaptation methods have been proposed to capture pixel-level domain-shift, such techniques may fail to maintain high-level semantic information for the segmentation task. For the case of biomedical images, fine details such as blood vessels can be lost during the image transformation operations between domains. In this work, we propose a model that adapts between domains using cycle-consistent loss while maintaining edge details of the original images by enforcing an edge-based loss during the adaptation process. We demonstrate the effectiveness of our algorithm by comparing it to other approaches on two eye fundus vessels segmentation datasets. We achieve 1.1 to 9.2 increment in DICE score compared to the SOTA and ~5.2 increments compared to a vanilla CycleGAN implementation.
翻译:网域适应是一种技术,用来解决在无形环境中缺乏大量标签数据的问题。建议采用无监督的域适应方法,使一个模型适应新模式,使用仅贴标签源数据和未贴标签的目标域数据。虽然许多图像-空间域适应方法已被提议用于捕捉像素级域变换,但这种技术可能无法为分层任务保留高层次的语义信息。就生物医学图像而言,在域间图像转换操作中,血液血管等细微细节可能会丢失。在这项工作中,我们提出了一个模型,在使用循环一致损失的域间进行调整,同时通过在适应过程中强制实施边基损失来保持原始图像的边缘细节。我们通过将算法与其他两种眼睛基金船分解数据集的方法进行比较,来证明我们的算法的有效性。我们实现了与SOTA相比,DICE评分数增加1.1至9.2,与香草循环GAN执行相比,我们比SOTA和~5.2递增分数。