This paper proposes two bottom-up interpretable neural network (NN) constructions for universal approximation, namely Triangularly-constructed NN (TNN) and Semi-Quantized Activation NN (SQANN). Further notable properties are (1) resistance to catastrophic forgetting (2) existence of proof for arbitrarily high accuracies (3) the ability to identify samples that are out-of-distribution through interpretable activation "fingerprints".
翻译:本文件提出了两种自下而上、可解释的通用近似神经网络(NN)构造,即三角构造NNN(TNN)和半量化活性NN(SQANN),其他值得注意的特性是:(1) 抵制灾难性的遗忘(2) 存在任意高度弧度的证据(3) 能够通过可解释的激活“指印”查明超出分配范围的样品。