We propose a novel approach for joint 3D multi-object tracking and reconstruction from RGB-D sequences in indoor environments. To this end, we detect and reconstruct objects in each frame while predicting dense correspondences mappings into a normalized object space. We leverage those correspondences to inform a graph neural network to solve for the optimal, temporally-consistent 7-DoF pose trajectories of all objects. The novelty of our method is two-fold: first, we propose a new graph-based approach for differentiable pose estimation over time to learn optimal pose trajectories; second, we present a joint formulation of reconstruction and pose estimation along the time axis for robust and geometrically consistent multi-object tracking. In order to validate our approach, we introduce a new synthetic dataset comprising 2381 unique indoor sequences with a total of 60k rendered RGB-D images for multi-object tracking with moving objects and camera positions derived from the synthetic 3D-FRONT dataset. We demonstrate that our method improves the accumulated MOTA score for all test sequences by 24.8% over existing state-of-the-art methods. In several ablations on synthetic and real-world sequences, we show that our graph-based, fully end-to-end-learnable approach yields a significant boost in tracking performance.


翻译:我们提出了在室内环境中从 RGB-D 序列中联合进行三维多点跟踪和重建的新方法。 为此, 我们检测并重建每个框架中的天体, 同时预测向正常的物体空间绘图的密集通信。 我们利用这些通信为图形神经网络提供信息, 以解决所有物体的最佳、 时间一致的 7- DoF 构成的轨迹。 我们的方法有两重新颖之处: 首先, 我们提出了一个新的基于图形的可变图像估计方法, 以了解最佳的外形轨迹; 第二, 我们提出一个联合的重建配方, 并沿着时间轴进行估算, 以稳健和几何一致的多点跟踪。 为了验证我们的方法, 我们引入一个新的合成数据集数据集, 由2381 个独特的室内序列组成, 共60k 个完成 RGB- D 图像, 用于对来自合成 3D- FRONAT 数据集的移动对象和相机位置进行多点跟踪。 我们展示了我们的方法, 我们的方法改进了所有测试序列的MOTA的累计分数分数分数, 由24.8% 并显示我们现有的州- bl- 平方平方平式的轨道上, 展示了我们以正方平方平方平方的进度的进度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月16日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员