项目名称: 关于共形维数的若干问题研究

项目编号: No.11301467

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王文

作者单位: 云南大学

项目金额: 22万元

中文摘要: 我们拟研究共形维数相关的几个问题。由于拟对称极小集是共形维数与集合维数相等的一类集合,因此,拟对称极小集的研究是共形维数研究的一个重要方面。由于直线上的拟对称映射与高维空间上的拟对称映射有很大的不同,因此,对于拟对称极小集也分为一维和高维两种情形来研究。直线上的拟对称映射的研究主要集中在以下两个方面:第一,把已有的Hausdorff维数下的拟对称极小集的研究推广到更为广泛的类,着重回答是否所有Hausdorff维数为1的均匀康托集都是拟对称极小的;第二,研究其它维数下的拟对称极小集问题,尤其是Assouad维数下的拟对称极小集的研究。对于高维空间上的拟对称极小集问题,我们将主要关注找出更多拟对称极小集的类,从而为最终刻画拟对称极小集做好准备。对于共形维数的研究,我们将主要关注什么样的集合共形维数能够达到,以及相应的拟对称映射的构造。

中文关键词: 拟对称映射;拟对称极小集;共形维数;分形几何;

英文摘要: We shall discuss serveral questions on conformal dimension. As quasisymmetrically minimal sets are sets whose dimension is equal to their conformal dimension, the study of quasisymmetrically minimal sets are an important aspect in the study of conformal dimension. Also, because quasisymmetric maps of real line are very different from quasisymmetric maps in high dimension case, quasisymmetrically minimal sets will be investigated in two different cases. For quasisymmetrically minimal sets in real line, we will investigate two questions. The first is to find more classes of quasisymmetrically minimal sets for Hausdorff dimension. We shall answer the question of whether uniform cantor sets of dimension 1 are all quasisymmetrically minimal. The second is to invesgate quasisymmetrically minimal sets for other dimensions, especially for Assouad dimension. For quasisymmetrical minimal sets in high dimension case, we shall mainly pay attention to find more classes of quasisymmetrically minimal sets. This is a step toward a characterization of quasisymmetrically minimal sets in high dimension case. For conformal dimension, we mainly study the question of how to obtain the conformal dimension of a set and how to construct the corresponding quasisymmetrical map.

英文关键词: Quasisymmetrical map;Quasisymmetrically minimal sets;Conformal dimension;Fractal geometry;

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
21+阅读 · 2021年6月28日
专知会员服务
31+阅读 · 2021年6月24日
专知会员服务
36+阅读 · 2021年6月6日
专知会员服务
45+阅读 · 2020年11月13日
基于深度神经网络的少样本学习综述
专知会员服务
171+阅读 · 2020年4月22日
多任务学习漫谈:以损失之名
PaperWeekly
1+阅读 · 2022年1月26日
机器学习计算距离和相似度的方法
极市平台
10+阅读 · 2019年9月20日
机器学习笔试题精选
人工智能头条
13+阅读 · 2018年7月22日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
机器学习(30)之线性判别分析(LDA)原理详解
机器学习算法与Python学习
11+阅读 · 2017年12月6日
关于处理样本不平衡问题的Trick整理
机器学习算法与Python学习
14+阅读 · 2017年12月3日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
FCS 论坛 | 孟德宇:误差建模原理
FCS
14+阅读 · 2017年8月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2018年2月7日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
21+阅读 · 2021年6月28日
专知会员服务
31+阅读 · 2021年6月24日
专知会员服务
36+阅读 · 2021年6月6日
专知会员服务
45+阅读 · 2020年11月13日
基于深度神经网络的少样本学习综述
专知会员服务
171+阅读 · 2020年4月22日
相关资讯
多任务学习漫谈:以损失之名
PaperWeekly
1+阅读 · 2022年1月26日
机器学习计算距离和相似度的方法
极市平台
10+阅读 · 2019年9月20日
机器学习笔试题精选
人工智能头条
13+阅读 · 2018年7月22日
迁移学习在深度学习中的应用
专知
23+阅读 · 2017年12月24日
机器学习(30)之线性判别分析(LDA)原理详解
机器学习算法与Python学习
11+阅读 · 2017年12月6日
关于处理样本不平衡问题的Trick整理
机器学习算法与Python学习
14+阅读 · 2017年12月3日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
FCS 论坛 | 孟德宇:误差建模原理
FCS
14+阅读 · 2017年8月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员