Optimal experimental design seeks to determine the most informative allocation of experiments to infer an unknown statistical quantity. In this work, we investigate the optimal design of experiments for {\em estimation of linear functionals in reproducing kernel Hilbert spaces (RKHSs)}. This problem has been extensively studied in the linear regression setting under an estimability condition, which allows estimating parameters without bias. We generalize this framework to RKHSs, and allow for the linear functional to be only approximately inferred, i.e., with a fixed bias. This scenario captures many important modern applications, such as estimation of gradient maps, integrals, and solutions to differential equations. We provide algorithms for constructing bias-aware designs for linear functionals. We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise, enabling us to certify estimation with bounded error with high probability.
翻译:最佳实验设计试图确定最丰富的实验分配,以推断一个未知的统计数量。 在这项工作中,我们调查了复制Hilbert空间(RKHSs) 的线性功能的实验的最佳设计。这个问题在可估计性条件下在线性回归环境中得到了广泛的研究,从而可以无偏差地估计参数。我们将这个框架推广到 RKHS, 并允许仅对线性功能进行大约的推断, 即有固定的偏差。 这个假设情景捕捉了许多重要的现代应用, 如梯度图、 集成物和差异方程式解决方案的估算。 我们为线性功能构建偏差- 设计提供了算法。 我们为亚伽鲁语噪音下的固定和适应性设计获取了非被动性信任套件, 使我们能够以高概率的误差来验证估算。