We consider multilevel decompositions of piecewise constants on simplicial meshes that are stable in $H^{-s}$ for $s\in (0,1)$. Proofs are given in the case of uniformly and locally refined meshes. Our findings can be applied to define local multilevel diagonal preconditioners that lead to bounded condition numbers (independent of the mesh-sizes and levels) and have optimal computational complexity. Furthermore, we discuss multilevel norms based on local (quasi-)projection operators that allow the efficient evaluation of negative order Sobolev norms. Numerical examples and a discussion on several extensions and applications conclude this article.
翻译:我们考虑的是,在简化的衬垫上,多层次的碎片常数分解,稳定在$H-s $-s $(0,1美元)的范围内。在统一和当地改良的衬垫中,可以提供证据。我们的调查结果可以用来界定地方多层次的多层次对角前置物,它们会导致受约束的条件数字(独立于网格大小和水平),并且具有最佳的计算复杂性。此外,我们讨论了基于当地(准)预测操作者的多层次规范,从而能够有效地评估反顺序Sobolev规范。数字实例和关于若干扩展和应用的讨论为这一条款的终结。