We establish uniform error bounds of time-splitting Fourier pseudospectral (TSFP) methods for the nonlinear Klein--Gordon equation (NKGE) with weak power-type nonlinearity and $O(1)$ initial data, while the nonlinearity strength is characterized by $\varepsilon^{p}$ with a constant $p \in \mathbb{N}^+$ and a dimensionless parameter $\varepsilon \in (0, 1]$, for the long-time dynamics up to the time at $O(\varepsilon^{-\beta})$ with $0 \leq \beta \leq p$. In fact, when $0 < \varepsilon \ll 1$, the problem is equivalent to the long-time dynamics of NKGE with small initial data and $O(1)$ nonlinearity strength, while the amplitude of the initial data (and the solution) is at $O(\varepsilon)$. By reformulating the NKGE into a relativistic nonlinear Schr\"{o}dinger equation, we adapt the TSFP method to discretize it numerically. By using the method of mathematical induction to bound the numerical solution, we prove uniform error bounds at $O(h^{m}+\varepsilon^{p-\beta}\tau^2)$ of the TSFP method with $h$ mesh size, $\tau$ time step and $m\ge2$ depending on the regularity of the solution. The error bounds are uniformly accurate for the long-time simulation up to the time at $O(\varepsilon^{-\beta})$ and uniformly valid for $\varepsilon\in(0,1]$. Especially, the error bounds are uniformly at the second order rate for the large time step $\tau = O(\varepsilon^{-(p-\beta)/2})$ in the parameter regime $0\le\beta <p$. Numerical results are reported to confirm our error bounds in the long-time regime. Finally, the TSFP method and its error bounds are extended to a highly oscillatory complex NKGE which propagates waves with wavelength at $O(1)$ in space and $O(\varepsilon^{\beta})$ in time and wave velocity at $O(\varepsilon^{-\beta})$.
翻译:我们为非线性 Klein- Gordon 等离子方程式( NKGE) 设定了统一的错误界限, 非线性电离型非线性平方程式( NKGE) 以弱的电离型非线性和非美元初始数据, 而非线性强的特征是 $\ varepsilon=p} 美元, 以及一个无维参数 $( varepsilon 0. 1) 的值差幅。 初始数据( 和溶液) 的亮度一直持续到 $( varepl) 。 通过将 NKGE 以 $( leq) 的离子机率( leq) 和 美元( betrideal=legal tylational- dislational max 等离差值 。 当 以美元 美元平流- 平流- 以美元 平流- 平和 美元 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平流- 平- 平- 平流- 平- 平- 平流- 平流- 平流- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平- 平-