In the MAXSPACE problem, given a set of ads A, one wants to place a subset A' of A into K slots B_1, ..., B_K of size L. Each ad A_i in A has size s_i and frequency w_i. A schedule is feasible if the total size of ads in any slot is at most L, and each ad A_i in A' appears in exactly w_i slots. The goal is to find a feasible schedule that maximizes the space occupied in all slots. We introduce MAXSPACE-RDWV, a MAXSPACE generalization with release dates, deadlines, variable frequency, and generalized profit. In MAXSPACE-RDWV each ad A_i has a release date r_i >= 1, a deadline d_i >= r_i, a profit v_i that may not be related with s_i and lower and upper bounds w^min_i and w^max_i for frequency. In this problem, an ad may only appear in a slot B_j with r_i <= j <= d_i, and the goal is to find a feasible schedule that maximizes the sum of values of scheduled ads. This paper presents some algorithms based on meta-heuristics Greedy Randomized Adaptive Search Procedure (GRASP), Variable Neighborhood Search (VNS), Local Search, and Tabu Search for MAXSPACE and MAXSPACE-RDWV. We compare our proposed algorithms with Hybrid-GA proposed by Kumar et al. (2006). We also create a version of Hybrid-GA for MAXSPACE-RDWV and compare it with our meta-heuristics for this problem. Some meta-heuristics, such as VNS and GRASP+VNS, have better results than Hybrid-GA for both problems.


翻译:在 MAX SPACE 问题中, 如果有一组 A 的 A ad 问题, 人们想要将 A 的子 A 放在 K 槽 B_ 1,... B_ K 大小的 L................... A.......... A............

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
1+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
3+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员