For time-dependent problems with high-contrast multiscale coefficients, the time step size for explicit methods is affected by the magnitude of the coefficient parameter. With a suitable construction of multiscale space, one can achieve a stable temporal splitting scheme where the time step size is independent of the contrast. Consider the parabolic equation with heterogeneous diffusion parameter, the flow rates vary significantly in different regions due to the high-contrast features of the diffusivity. In this work, we aim to introduce a multirate partially explicit splitting scheme to achieve efficient simulation with the desired accuracy. We first design multiscale subspaces to handle flow with different speed. For the fast flow, we obtain a low-dimensional subspace with respect to the high-diffusive component and adopt an implicit time discretization scheme. The other multiscale subspace will take care of the slow flow, and the corresponding degrees of freedom are treated explicitly. Then a multirate time stepping is introduced for the two parts. The stability of the multirate methods is analyzed for the partially explicit scheme. Moreover, we derive local error estimators corresponding to the two components of the solutions and provide an upper bound of the errors. An adaptive local temporal refinement framework is then proposed to achieve higher computational efficiency. Several numerical tests are presented to demonstrate the performance of the proposed method.
翻译:对于高相调多尺度系数的有时间依赖的问题,明确方法的时间步骤大小会受到系数参数大小的影响。如果能够适当构建多尺度的空间,人们可以实现一个稳定的时分法方案,时间步大小与对比不相容。考虑到具有不同扩散参数的抛线式方程式,不同区域的流速率差异很大,因为分流参数的相异性特征较高。在此工作中,我们打算采用一个多率部分分流计划,以预期的准确性实现高效模拟。我们首先设计多尺度的子空间,以不同的速度处理流动。对于快速流,我们获得一个与高分步段大小相独立的低维次空间,并采用隐含的时间分解方案。其他多尺度的子空间将照顾慢流,并明确处理相应的自由度。然后为两部分分流引入一个多级时间级梯。然后为部分明确的计划分析多级方法的稳定性。此外,我们为两种解决方案的分流设计出与两个部分速度相适应的多尺度子空间。对于快速流,我们获得一个低维的子空间,对于高分空间组件,我们获得一个低维的分立的分立的分空间,并采用一个隐性分立方案。其他多尺度的分立的分解法,然后对地测试,然后提供一个高空框架,以显示高空,然后对地测测测算出一个高空法,然后对地测算。