This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed Lipschitz bounds, i.e. limited sensitivity to perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP), which does not scale to large models. In contrast to the SDP approach, we provide a ``direct'' parameterization, i.e. a smooth mapping from $\mathbb R^N$ onto the set of weights of Lipschitz-bounded networks. This enables training via standard gradient methods, without any computationally intensive projections or barrier terms. The new parameterization can equivalently be thought of as either a new layer type (the \textit{sandwich layer}), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. Finally, the comprehensive set of experiments on image classification shows that sandwich layers outperform previous approaches on both empirical and certified robust accuracy.
翻译:本文介绍了具有保证利普希茨界限制的深度神经网络的新参数化方式(包括全连接和卷积)。 利普希茨保证等同于基于半定规划(SDP)的认证所知道的最紧密的界限,这种方法并不适用于大型模型。与SDP方法相反,我们提供了一种“直接”参数化,即将$\mathbb R^N$映射到利普希茨有界网络的权重集合。这使得可以使用标准梯度方法进行训练,无需进行任何计算密集型的投影或障碍项。新的参数化可以等效地被视为一种新的层类型(“sandwich”层),或者是具有相邻层之间参数共享的标准前向网络的新颖参数化。最后,对图像分类的全面实验表明,“sandwich”层在经验性和认证鲁棒性准确性方面均优于先前的方法。