The goal of this thesis is to study the compression problems arising in distributed computing systematically. In the first part of the thesis, we study gradient compression for distributed first-order optimization. We begin by establishing information theoretic lower bounds on optimization accuracy when only finite precision gradients are used. Also, we develop fast quantizers for gradient compression, which, when used with standard first-order optimization algorithms, match the aforementioned lower bounds. In the second part of the thesis, we study distributed mean estimation, an important primitive for distributed optimization algorithms. We develop efficient estimators which improve over state of the art by efficiently using the side information present at the center. We also revisit the Gaussian rate-distortion problem and develop efficient quantizers for this problem in both the side-information and the no side information setting. Finally, we study the problem of entropic compression of the symbols transmitted by the edge devices to the center, which commonly arise in cyber-physical systems. Our goal is to design entropic compression schemes that allow the information to be transmitted in a 'timely' manner, which, in turn, enables the center to have access to the latest information for computation. We shed light on the structure of the optimal entropic compression scheme and, using this structure, we develop efficient algorithms to compute this optimal compression scheme.
翻译:该论文的目的是研究分布式计算中产生的压缩问题。 在论文的第一部分, 我们为分布式第一阶优化研究梯度压缩问题。 我们首先在只使用有限精度梯度时建立关于优化精度的信息理论下限。 此外, 我们开发梯度压缩快速量化器, 当使用标准的一阶优化算法时, 与上述下限相匹配。 在论文的第二部分, 我们研究分布式平均估算, 这是分布式优化算法的重要原始。 我们开发高效的估测器, 通过使用中心现有的侧端信息, 来高效地改善艺术状态。 我们还在边端信息和非侧信息设置中, 建立关于优化精度精确度的信息理论下限。 最后, 我们研究边端设备传输到中心的符号的摄像压缩问题, 通常在网络物理系统中出现。 我们的目标是设计进化压缩仪仪, 使信息能够以“ 及时” 的方式传输, 从而有效地使用中心当前的侧端信息。 我们还在边端信息扭曲度上重新审视高比度问题, 开发高效的计算器结构, 使中心能够使用这种最优化的精确的计算方法 。