In distributed or federated optimization and learning, communication between the different computing units is often the bottleneck and gradient compression is widely used to reduce the number of bits sent within each communication round of iterative methods. There are two classes of compression operators and separate algorithms making use of them. In the case of unbiased random compressors with bounded variance (e.g., rand-k), the DIANA algorithm of Mishchenko et al. (2019), which implements a variance reduction technique for handling the variance introduced by compression, is the current state of the art. In the case of biased and contractive compressors (e.g., top-k), the EF21 algorithm of Richt\'arik et al. (2021), which instead implements an error-feedback mechanism, is the current state of the art. These two classes of compression schemes and algorithms are distinct, with different analyses and proof techniques. In this paper, we unify them into a single framework and propose a new algorithm, recovering DIANA and EF21 as particular cases. Our general approach works with a new, larger class of compressors, which has two parameters, the bias and the variance, and includes unbiased and biased compressors as particular cases. This allows us to inherit the best of the two worlds: like EF21 and unlike DIANA, biased compressors, like top-k, whose good performance in practice is recognized, can be used. And like DIANA and unlike EF21, independent randomness at the compressors allows to mitigate the effects of compression, with the convergence rate improving when the number of parallel workers is large. This is the first time that an algorithm with all these features is proposed. We prove its linear convergence under certain conditions. Our approach takes a step towards better understanding of two so-far distinct worlds of communication-efficient distributed learning.
翻译:在分布式或联合式优化和学习中,不同计算单位之间的沟通通常是瓶颈和梯度压缩,这是当前工艺的状态。对于偏差和契约式压缩器(例如,顶部-k)、Richt\'arik 等人的EF21算法(2021年),它们使用两种不同的压缩操作器和不同的算法。对于不偏颇的随机压缩器和受限制的差异(例如,Rand-k),Mishchenko 等人的DIANA算法(2019年),它采用一种处理压缩产生的差异的减少差异技术,这是当前工艺的状态。对于偏差和契约式压缩器(例如,顶部-k)和梯度压缩器,则被广泛使用。对于偏差的EF21算法,我们一般方法与新的、更大的缩压器(例如,上层-A的算法) 使用两种不同的压缩和算法, 使得我们最接近的缩略性变的缩法(这些缩法的缩算法是两种不同的缩法), 使得我们最接近于一种偏差和最接近的缩化的缩化的缩化的缩化的缩化的缩化法。</s>