项目名称: 同轴电缆型复合纳米纤维电极的电纺丝制备及超快充放电特性研究

项目编号: No.51474113

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 矿业工程

项目作者: 沈湘黔

作者单位: 江苏大学

项目金额: 83万元

中文摘要: 超快速充放电先进电源技术是可再生间歇性能源技术、电动汽车等发展的重要基础。由于碳基材料与电极活性物间界面结合力弱 及导电性低等而导致电极的高倍率充放电性能和循环稳定性差,本项目首次提出以金属镍纳米纤维取代碳基材料,利用电纺技术制备Li3V2(PO4)3/ Ni二相同轴电缆型复合纳米纤维电极,通过改善界面结合强度、形成 Ni纳米纤维导电网络、缩短离子迁移路径等,提高其高倍率充放电性能和循环寿命。研究复合纳米纤维电极的制备过程,探索分级纳米结构、形貌、电极活性物负载厚度等的可控方法;结合实验研究和理论计算, 研究调控Li3V2(PO4)3/Ni界面结构的因素,建立电极界面结构、化学组成、Ni纳米纤维导电网络结构等与电极电化学性能的关系;开发二相同轴电缆型复合纳米纤维电极材料制备技术,发展新型金属纳米纤维基超快充放电电极材料,为高能量密度、长寿命、超快速充放电锂离子电池及超电容储能技术奠定基。

中文关键词: 复合电极;同轴纳米纤维;电纺丝;界面结构;超快充放电

英文摘要: Advanced power sources with ultrafast charging-discharging performance are critical to develop renewable intermittency power and electric vehicle technologies.Due to the degradation of high-rate charging-discharging and cycling properties for the carbon-based electrode usually resulting from low electric conductivity and weak cohesion between carbon substrate and electroactive material, this work for the first time to prepare coaxial Li3V2(po4)3/Ni composite nanofibers by the electrospinning and selective reduction process, with replacement of carbon-based material using metallic Ni nanofibers. The main objectives are to improve the interface cohesion,form metallic Ni nanofibers electric conducting networks, short the ions transport distance etc., lead to enhancements in high-rate charging-discharging property and cycling life for the composite nanofibers electrode.It is necessary to study and optimize the porous structure in composite nanofibers electrode, composite nanofibers morphology, electroactive material loaded thickness during the electrospinning and selective reduction process.Theoretically, in order to construct the relations among the interface structure in electrode,chemical composition, Ni nanofibers electric conducting networks and the electrochemical behavior of the electrode, it needs investigations of the formation process for interface structures in Li3V2(PO4)3-Ni system through computation combining the experimental results.Based on the above preparation and fundamental works, this project will develop the innovative preparation technology for the coaxial composite nanofibers electrode materials and other new electrode types of metallic nanofibers, and the knowledge can be significant for the development of lithium-ion-battery and supercapacitor technology with high-power density, long-life and ultrafast charging-discharging performance.

英文关键词: Composite electrode;coaxial nanofibers;electrospinning;interface structure;ultrafast charging-discharging

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
17+阅读 · 2022年4月25日
开放型对话技术研究综述
专知会员服务
39+阅读 · 2021年12月28日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
33+阅读 · 2021年5月7日
深度学习模型终端环境自适应方法研究
专知会员服务
34+阅读 · 2020年11月13日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
43+阅读 · 2020年9月8日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
摩托车界能否诞生「特斯拉」?
36氪
0+阅读 · 2022年2月28日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月30日
Arxiv
1+阅读 · 2022年5月30日
Arxiv
30+阅读 · 2019年3月13日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
17+阅读 · 2022年4月25日
开放型对话技术研究综述
专知会员服务
39+阅读 · 2021年12月28日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
33+阅读 · 2021年5月7日
深度学习模型终端环境自适应方法研究
专知会员服务
34+阅读 · 2020年11月13日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
43+阅读 · 2020年9月8日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员