This paper deals with the scenario approach to robust optimization. This relies on a random sampling of the possibly infinite number of constraints induced by uncertainties in the parameters of an optimization problem. Solving the resulting random program yields a solution for which the quality is measured in terms of the probability of violating the constraints for a random value of the uncertainties, typically unseen before. Another central issue is the determination of the sample complexity, i.e., the number of random constraints (or scenarios) that one must consider in order to guarantee a certain level of reliability. In this paper, we introduce the notion of margin to improve upon standard results in this field. In particular, using tools from statistical learning theory, we show that the sample complexity of a class of random programs does not explicitly depend on the number of variables. In addition, within the considered class, that includes polynomial constraints among others, this result holds for both convex and nonconvex instances with the same level of guarantees. We also derive a posteriori bounds on the probability of violation and sketch a regularization approach that could be used to improve the reliability of computed solutions on the basis of these bounds.
翻译:本文涉及稳健优化的假设方法。 这依赖于随机抽样研究因优化问题参数的不确定性而可能造成的无限限制。 解决由此产生的随机程序产生一个解决方案, 其质量的衡量依据是, 通常以前所见的不确定性随机值的违反限制的可能性。 另一个核心问题是确定样本的复杂性, 即, 随机限制( 或假设) 的数量, 以保证一定的可靠性。 在本文中, 我们引入了比值概念, 以便改善这一领域的标准结果。 特别是, 使用统计学习理论的工具, 我们表明, 随机程序的样本复杂性并不明确取决于变量的数量。 此外, 在所考虑的类别中, 包括多种制约在内的其他类别中, 这一结果对具有相同程度保证的 convex 和非convex 两种情况都有影响。 我们还从事后推论了违反的可能性, 并勾画出一种正规化方法, 可用于提高基于这些约束的计算解决方案的可靠性。</s>