Fast distributed algorithms that output a feasible solution for constraint satisfaction problems, such as maximal independent sets, have been heavily studied. There has been much less research on distributed sampling problems, where one wants to sample from a distribution over all feasible solutions (e.g., uniformly sampling a feasible solution). Recent work (Feng, Sun, Yin PODC 2017; Fischer and Ghaffari DISC 2018; Feng, Hayes, and Yin arXiv 2018) has shown that for some constraint satisfaction problems there are distributed Markov chains that mix in $O(\log n)$ rounds in the classical LOCAL model of distributed computation. However, these methods return samples from a distribution close to the desired distribution, but with some small amount of error. In this paper, we focus on the problem of exact distributed sampling. Our main contribution is to show that these distributed Markov chains in tandem with techniques from the sequential setting, namely coupling from the past and bounding chains, can be used to design $O(\log n)$-round LOCAL model exact sampling algorithms for a class of weighted local constraint satisfaction problems. This general result leads to $O(\log n)$-round exact sampling algorithms that use small messages (i.e., run in the CONGEST model) and polynomial-time local computation for some important special cases, such as sampling weighted independent sets (aka the hardcore model) and weighted dominating sets.


翻译:对限制满意度问题的可行解决办法,如最大独立套件,进行了大量研究。对分布式抽样问题的研究要少得多,对分布式抽样问题的研究要少得多,因为人们希望从所有可行解决办法(例如统一抽样)的分布中取样。最近的工作(Feng、Sun、Yin PoDC 2017;Fischer和Ghaffari DISC 2018;Fischer和Ghaffari DISC 2018;Feng、Hayes和Yin arxiv 2018)表明,对于某些制约性满意度问题,有分布式的Markov链,在传统的LOCAL分布式计算模型中以美元(log n)合产值($/log n)合产值($/log n)。然而,这些方法将样品从接近理想分布式分布式分布式中提取,但有少量误差。在本文中,我们侧重于精确分布式抽样抽样的问题。我们的主要贡献是表明,这些分布式的Markov链与顺序设置的技术,即与过去和捆绑定的序列结合,可以用来设计美元(美元)独立的LOCOL模型(ral n)精确的计算,用于某种加权的缩缩缩缩缩缩缩算。(美元的CAS)。</s>

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2023年4月25日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员