Simulations of large scale dynamical systems in multi-query or real-time contexts require efficient surrogate modelling techniques, as e.g. achieved via Model Order Reduction (MOR). Recently, symplectic methods like the complex singular value decomposition (cSVD) or the SVD-like decomposition have been developed for preserving Hamiltonian structure during MOR. In the current contribution, we show how symplectic structure preserving basis generation can be made more efficient with randomized matrix factorizations. We present a randomized complex SVD (rcSVD) algorithm and a randomized SVD-like (rSVD-like) decomposition. We demonstrate the efficiency of the approaches with numerical experiments on high dimensional systems.
翻译:在多孔或实时情况下,大型动态系统的模拟需要高效的替代模拟技术,例如通过减少命令模型(MOR)实现的替代模型技术。最近,为了保护汉密尔顿结构,已经开发了复杂单值分解法(cSVD)或类似SVD的分解法。在目前的贡献中,我们展示了如何通过随机矩阵因子化使保全基建结构更高效地产生。我们展示了随机的复杂SVD(rcSVD)算法和随机的SVD类(rSVD)分解法。我们展示了高维系统数字实验方法的效率。</s>