It is of great importance to investigate the significance of a subset of covariates W for the response Y given covariates Z in regression modeling. To this end, we propose a new significance test for the partial mean independence problem based on deep neural networks and data splitting. The test statistic converges to the standard chi-squared distribution under the null hypothesis while it converges to a normal distribution under the alternative hypothesis. We also suggest a powerful ensemble algorithm based on multiple data splitting to enhance the testing power. If the null hypothesis is rejected, we propose a new partial Generalized Measure of Correlation (pGMC) to measure the partial mean dependence of Y given W after controlling for the nonlinear effect of Z, which is an interesting extension of the GMC proposed by Zheng et al. (2012). We present the appealing theoretical properties of the pGMC and establish the asymptotic normality of its estimator with the optimal root-N converge rate. Furthermore, the valid confidence interval for the pGMC is also derived. As an important special case when there is no conditional covariates Z, we also consider a new test of overall significance of covariates for the response in a model-free setting. We also introduce new estimator of GMC and derive its asymptotic normality. Numerical studies and real data analysis are also conducted to compare with existing approaches and to illustrate the validity and flexibility of our proposed procedures.


翻译:在回归模型中,必须调查对 Y 响应 Y 给 Z 的 共变值 W 子子集的意义。 为此,我们提出基于深神经网络和数据分割的局部中值独立问题进行新的意义测试。 测试统计数据在无效假设下与标准气相匹配分布相融合, 而它在替代假设下则与正常分布相融合。 我们还建议基于多个数据分离的强大混合算法, 增强测试力。 如果否定的假设被否决, 我们提议一个新的局部通缩通用度(pGMC)测量Y在控制Z的非线性效应后的部分中值偏差依赖性(pGMC) 。 这是Zheng等人(2012) 提议的GMC 的有趣的扩展。 我们展示了PGMC 的诱人的理论属性, 并确定了其估计值与最佳root-N 趋同率的无偏差性正常性。 此外, 也为PGMC 提出了一个重要的特别案例, 在没有对正变值的正变数和新变数分析中, 我们还考虑对新数据进行共同测试。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员