Consider a distributed task where the communication network is fixed but the local inputs given to the nodes of the distributed system may change over time. In this work, we explore the following question: if some of the local inputs change, can an existing solution be updated efficiently, in a dynamic and distributed manner? To address this question, we define the batch dynamic CONGEST model in which we are given a bandwidth-limited communication network and a dynamic edge labelling defines the problem input. The task is to maintain a solution to a graph problem on the labeled graph under batch changes. We investigate, when a batch of $\alpha$ edge label changes arrive, -- how much time as a function of $\alpha$ we need to update an existing solution, and -- how much information the nodes have to keep in local memory between batches in order to update the solution quickly. Our work lays the foundations for the theory of input-dynamic distributed network algorithms. We give a general picture of the complexity landscape in this model, design both universal algorithms and algorithms for concrete problems, and present a general framework for lower bounds. In particular, we derive non-trivial upper bounds for two selected, contrasting problems: maintaining a minimum spanning tree and detecting cliques.


翻译:考虑一个分布式任务, 其中通信网络是固定的, 但给分布式系统节点的本地投入可能随时间变化而变化。 在这项工作中, 我们探讨以下问题: 如果某些本地投入的变化能够有效、 动态和分布式更新现有解决方案? 为了解决这个问题, 我们定义了批量动态 CONGEST 模式, 给我们一个带宽的通信网络和动态边缘标签, 从而定义了问题输入。 任务是在批次变化下, 保持对标签图中的问题的图解问题的解决方案 。 当一组 $\ alpha$ 边缘标签变化到来时, 我们调查的是, 我们需要多少时间作为 $\ alpha$的函数来更新现有解决方案, 以及 -- -- 为了快速更新解决方案, 节点必须在批次之间的本地记忆中保存多少信息 。 我们的工作为输入- 动态分布式网络算法的理论打下了基础 。 我们给出了该模型复杂地貌的总体图, 设计了具体问题的通用算法和算法, 并且为更下框提供一个总体框架 。 。 特别是, 我们为两个选择的树上最短的对比问题 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
19+阅读 · 2020年7月13日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
19+阅读 · 2020年7月13日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
3+阅读 · 2018年2月11日
Top
微信扫码咨询专知VIP会员