In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and Suomela (2016) that for every real $\alpha>1$ and integer $\Delta$, a fractional coloring of total weight at most $\alpha(\Delta+1)$ can be obtained deterministically in a single round in graphs of maximum degree $\Delta$, in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed $\epsilon > 0$ and $\Delta$, a fractional coloring of total weight at most $\Delta+\epsilon$ can be found in $O(\log^*n)$ rounds in graphs of maximum degree $\Delta$ with no $K_{\Delta+1}$, while finding a fractional coloring of total weight at most $\Delta$ in this case requires $\Omega(\log \log n)$ rounds for randomized algorithms and $\Omega( \log n)$ rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most $2+\epsilon$ in grids of any fixed dimension, for any $\epsilon>0$, in $O(\log^*n)$ rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most $2+\epsilon$, for any $\epsilon>0$, in $O(\log n)$ rounds.
翻译:在本文中, 我们从分布式计算的角度来研究分数颜色。 分数颜色是传统色素概念的线性松动, 并且有许多应用, 特别是在列表中。 由Hasemann、 Hirvonen、 Rybicki 和 Suomela(2016) 所证明的是, 对于每一个真实的 $alpha > 1 和整数 $\ Delta$, 我们可以用一个单回合来确定总重量的分数( $alpha (\ Delta+1) 。 在 LOCAL 计算模型中, 硬色素色素是 $$( D$) 的最大值。 然而, 这个结果的一个主要问题是每个顶数的输出没有限制大小 。 即使我们提出更现实的假设, 每个脊椎的输出是不变的大小, 我们能找到总重量总重量的分数( $美元) 。 更确切地说, 我们发现任何固定的 $( $) 美元 和 美元 美元( 美元) 美元) 的分数 。