We establish higher-order expansions for a difference between probability distributions of sums of i.i.d. random vectors in a Euclidean space. The derived bounds are uniform over two classes of sets: the set of all Euclidean balls and the set of all half-spaces. These results allow to account for an impact of higher-order moments or cumulants of the considered distributions; the obtained error terms depend on a sample size and a dimension explicitly. The new inequalities outperform accuracy of the normal approximation in existing Berry--Esseen inequalities under very general conditions. For symmetrically distributed random summands, the obtained results are optimal in terms of the ratio between the dimension and the sample size. The new technique which we developed for establishing nonasymptotic higher-order expansions can be interesting by itself. Using the new higher-order inequalities, we study accuracy of the nonparametric bootstrap approximation and propose a bootstrap score test under possible model misspecification. The results of the paper also include explicit error bounds for general elliptical confidence regions for an expected value of the random summands, and optimality of the Gaussian anti-concentration inequality over the set of all Euclidean balls.
翻译:我们设置了更高层次的扩展, 以区分在 Euclidean 空间中i.d.d. 随机矢量的概率分布。 衍生的边框在两种类型的组合中是统一的: 所有 Euclidean 球和所有半空的一组。 这些结果可以说明更高层次的瞬间或考虑分布的积聚的影响; 获得的误差条件取决于抽样大小和明确的尺寸。 在非常一般的条件下, Berry- Esseen 的正常近似值的准确性比新的不平等差强。 对于对称分布随机的随机总和, 所获得的结果在尺寸和样本大小之间的比例方面是最佳的。 我们为建立非亚球性更高层次的扩展而开发的新技术本身可能很感兴趣。 使用新的更高层次的不平等, 我们研究非对称的靴带近差的精确性, 并在可能的模型错误分类中提出一个靴带评分评分测试。 纸张的结果还包括一般的椭信任区在一般的等分布随机分布上明确的错误, 以及所有高层次和最优的磁度定的磁度。