We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. An adaptive finite element method driven by an a posteriori error estimator for the error in the parameters is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.
翻译:我们用数量有限的参数来考虑椭圆线性赤道参数估计问题。 提供了一种由参数错误的事后误差估计器驱动的适应性有限元素方法。 与文献先前的结果不同, 我们的估计器由州方程的标准能源误差剩余测算器和适当的共同状态问题组成, 反映了参数误差与( co) 状态变量的更快趋同。 我们显示了我们方法的最佳趋同率; 特别是与先前的工程不同, 我们证明估计器下降的速率是州和共同状态变量最佳近似率的总和。 实验证实我们的方法与参数误差的趋同率相匹配。