We consider an important generalization of the Steiner tree problem, the \emph{Steiner forest problem}, in the Euclidean plane: the input is a multiset $X \subseteq \mathbb{R}^2$, partitioned into $k$ color classes $C_1, C_2, \ldots, C_k \subseteq X$. The goal is to find a minimum-cost Euclidean graph $G$ such that every color class $C_i$ is connected in $G$. We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to $X$. Each input point $x\in X$ arrives with its color $\textsf{color}(x) \in [k]$, and as usual for dynamic geometric streams, the input points are restricted to the discrete grid $\{0, \ldots, \Delta\}^2$. We design a single-pass streaming algorithm that uses $\mathrm{poly}(k \cdot \log\Delta)$ space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio $\alpha_2$ (currently $1.1547 \le \alpha_2 \le 1.214$). This approximation guarantee matches the state of the art bound for streaming Steiner tree, i.e., when $k=1$. Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical Arora-style dynamic-programming framework for geometric optimization problems, which usually requires large memory and has so far not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite approximation requires $\Omega(k)$ bits of space.


翻译:我们考虑将施泰纳树问题,即 Euclidean 平面上的 emph{ Steiner 森林问题作一个重要的概括化处理。 在 Euclidean 平面上, 我们研究的是斯泰纳森林问题, 输入是一个多立方美元=x=subseteque $C_1, C_2, C_k romats, C_k\ asubseqeq X$。 目标是找到一个最低成本的 Euclide 平面图$G$, 这样每类的 $C_ i litermode2 美元都以$G$连接起来。 我们在流中, 流由插入和删除点=xssubsetreeteqreetrial_ dirmaxl=lationslationslational_ dirgymal_ dirmal_ dirmaxlation laxl_xxxxxxxxxxlxl_ cremodeal dirmatial lial_cal_cal_cal limaxlation laxl_xl) latime laus lax lax lax laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员