Vision-based autonomous urban driving in dense traffic is quite challenging due to the complicated urban environment and the dynamics of the driving behaviors. Widely-applied methods either heavily rely on hand-crafted rules or learn from limited human experience, which makes them hard to generalize to rare but critical scenarios. In this paper, we present a novel CAscade Deep REinforcement learning framework, CADRE, to achieve model-free vision-based autonomous urban driving. In CADRE, to derive representative latent features from raw observations, we first offline train a Co-attention Perception Module (CoPM) that leverages the co-attention mechanism to learn the inter-relationships between the visual and control information from a pre-collected driving dataset. Cascaded by the frozen CoPM, we then present an efficient distributed proximal policy optimization framework to online learn the driving policy under the guidance of particularly designed reward functions. We perform a comprehensive empirical study with the CARLA NoCrash benchmark as well as specific obstacle avoidance scenarios in autonomous urban driving tasks. The experimental results well justify the effectiveness of CADRE and its superiority over the state-of-the-art by a wide margin.
翻译:在密集交通中的自动驾驶视觉化城市驾驶是非常具有挑战性的,因为城市环境复杂,驾驶行为的动态性。广泛应用的方法要么严重依赖于手工制作的规则,要么从有限的人类经验中学习,这使得它们难以推广到罕见但关键的情况。在本文中,我们提出了一种新颖的CAscade Deep REinforcement learning framework,CADRE,以实现基于视觉的自动驾驶。在CADRE中,为了从原始观测中导出代表性的潜在特征,我们首先离线训练了一个Co-attention Perception Module(CoPM),它利用共同关注机制从预收集的驾驶数据集中学习视觉和控制信息之间的相互关系。在冻结的CoPM的级联作用下,我们提出了一个高效的分布式近端策略优化框架,在特别设计的奖励函数的指导下在线学习驾驶策略。我们进行了一项全面的实证研究,使用CARLA NoCrash基准测试以及自动驾驶任务中特定的避障场景。实验证明了CADRE的有效性以及它对现有技术的显着优越性。