Recently introduced instruction-paradigm empowers non-expert users to leverage NLP resources by defining a new task in natural language. Instruction-tuned models have significantly outperformed multitask learning models (without instruction); however they are far from state-of-the-art task-specific models. Conventional approaches to improve model performance via creating datasets with large number of task instances or architectural changes in the model may not be feasible for non-expert users. However, they can write alternate instructions to represent an instruction task. Is Instruction-augmentation helpful? We augment a subset of tasks in the expanded version of NATURAL INSTRUCTIONS with additional instructions and find that it significantly improves model performance (up to 35%), especially in the low-data regime. Our results indicate that an additional instruction can be equivalent to ~200 data samples on average across tasks.
翻译:最近引入的教学范式使非专家用户能够通过界定自然语言的新任务来利用非专家用户的资源。 受指导模式大大超过多任务学习模式( 没有教学); 但是它们远非最先进的特定任务模式。 通过创建具有大量任务实例的数据集或模型的建筑变化来改进模型性能的常规方法对非专家用户来说可能不可行。 但是,他们可以撰写替代指令来代表教学任务。 教化是否有用? 我们在扩展版的《NATURAL Instructions》中增加了一组任务,增加了更多的指示,发现它大大改进了模型性能(高达35%),特别是在低数据制度中。 我们的结果表明,额外的指令可以相当于整个任务平均的~200个数据样本。