In graph theory, the minimum directed feedback vertex set (FVS) problem consists in identifying the smallest subsets of vertices in a directed graph whose deletion renders the directed graph acyclic. Although being known as NP-hard since 1972, this problem can be solved in a reasonable time on small instances, or on instances having special combinatorial structure. In this paper we investigate graph reductions preserving all or some minimum FVS and focus on their properties, especially the Church-Rosser property, also called confluence. The Church-Rosser property implies the irrelevance of reduction order, leading to a unique directed graph. The study seeks the largest subset of reductions with the Church-Rosser property and explores the adaptability of reductions to meet this criterion. Addressing these questions is crucial, as it may impact algorithmic implications, allowing for parallelization and speeding up sequential algorithms.
翻译:暂无翻译