We establish the Bahadur representation of sample quantiles for stabilizing score functionals in stochastic geometry and study local fluctuations of the corresponding empirical distribution function. The scores are obtained from a Poisson process. We apply the results to trimmed and Winsorized means of the score functionals and establish a law of the iterated logarithm for the sample quantiles of the scores.
翻译:我们建立Bahadur 样本量子代表制, 以稳定随机几何测量中的分数功能, 并研究相应的实证分布函数的本地波动。 分数来自 Poisson 进程。 我们将结果应用到分数函数的精细和 Winsorized 方法, 并为分数的样本量子制定迭代对数法 。