Random dimensionality reduction is a versatile tool for speeding up algorithms for high-dimensional problems. We study its application to two clustering problems: the facility location problem, and the single-linkage hierarchical clustering problem, which is equivalent to computing the minimum spanning tree. We show that if we project the input pointset $X$ onto a random $d = O(d_X)$-dimensional subspace (where $d_X$ is the doubling dimension of $X$), then the optimum facility location cost in the projected space approximates the original cost up to a constant factor. We show an analogous statement for minimum spanning tree, but with the dimension $d$ having an extra $\log \log n$ term and the approximation factor being arbitrarily close to $1$. Furthermore, we extend these results to approximating solutions instead of just their costs. Lastly, we provide experimental results to validate the quality of solutions and the speedup due to the dimensionality reduction. Unlike several previous papers studying this approach in the context of $k$-means and $k$-medians, our dimension bound does not depend on the number of clusters but only on the intrinsic dimensionality of $X$.
翻译:随机维度减少是加速高维问题的算法的通用工具。 我们研究它适用于两个组群问题: 设施定位问题, 以及单链项等级组合问题, 相当于计算最小横幅树。 我们显示, 如果我们将输入点投射到一个随机的美元=O(d_ X)$x的维次空间( 美元X美元是双倍的美元x美元), 那么预测空间的最佳设施位置成本会接近原始成本, 直至一个恒定系数。 我们为最小的横幅树展示了一个相似的语句, 但是其维度为$=log\log n$, 而近似系数则任意接近于$1美元。 此外, 我们将这些结果扩展为接近解决方案, 而不是仅仅其成本。 最后, 我们提供实验结果来验证解决方案的质量以及由于减少维度而导致的加速。 与以前研究这一方法的一些论文在 $- y 和 $k$- med-mens 背景下研究这一方法的论文不同, 我们的维维约束并不取决于 $x 的维数, 仅取决于 X 的维 。