This paper studies probability distributions ofpenultimate activations of classification networks.We show that, when a classification network istrained with the cross-entropy loss, its final classi-fication layer forms aGenerative-Discriminativepairwith a generative classifier based on a specificdistribution of penultimate activations. More im-portantly, the distribution is parameterized by theweights of the final fully-connected layer, and canbe considered as a generative model that synthe-sizes the penultimate activations without feedinginput data. We empirically demonstrate that thisgenerative model enables stable knowledge dis-tillation in the presence of domain shift, and cantransfer knowledge from a classifier to variationalautoencoders and generative adversarial networksfor class-conditional image generation.
翻译:本文研究分类网络的二次激活的概率分布。 我们显示, 当分类网络在接受跨热带损失的训练时, 其最终的分类变化层形成一个基于倒数第二次激活特定分布的基因化分类器。 更直接的是, 该分布由最终的完全连接层的重量参数化, 并且可以被视为一个基因化模型, 将倒数第二次激活的大小合成而没有输入输入数据。 我们从经验上证明, 这一基因模型能够在域变换时稳定地利用知识, 并且能够将知识从分类转换到变异自动调节器和基因对抗网络, 用于生成等级- 有条件的图像 。