This paper studies probability distributions ofpenultimate activations of classification networks.We show that, when a classification network istrained with the cross-entropy loss, its final classi-fication layer forms aGenerative-Discriminativepairwith a generative classifier based on a specificdistribution of penultimate activations. More im-portantly, the distribution is parameterized by theweights of the final fully-connected layer, and canbe considered as a generative model that synthe-sizes the penultimate activations without feedinginput data. We empirically demonstrate that thisgenerative model enables stable knowledge dis-tillation in the presence of domain shift, and cantransfer knowledge from a classifier to variationalautoencoders and generative adversarial networksfor class-conditional image generation.


翻译:本文研究分类网络的二次激活的概率分布。 我们显示, 当分类网络在接受跨热带损失的训练时, 其最终的分类变化层形成一个基于倒数第二次激活特定分布的基因化分类器。 更直接的是, 该分布由最终的完全连接层的重量参数化, 并且可以被视为一个基因化模型, 将倒数第二次激活的大小合成而没有输入输入数据。 我们从经验上证明, 这一基因模型能够在域变换时稳定地利用知识, 并且能够将知识从分类转换到变异自动调节器和基因对抗网络, 用于生成等级- 有条件的图像 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员