Various non-trivial spaces are becoming popular for embedding structured data such as graphs, texts, or images. Following spherical and hyperbolic spaces, more general product spaces have been proposed. However, searching for the best configuration of product space is a resource-intensive procedure, which reduces the practical applicability of the idea. We generalize the concept of product space and introduce an overlapping space that does not have the configuration search problem. The main idea is to allow subsets of coordinates to be shared between spaces of different types (Euclidean, hyperbolic, spherical). As a result, parameter optimization automatically learns the optimal configuration. Additionally, overlapping spaces allow for more compact representations since their geometry is more complex. Our experiments confirm that overlapping spaces outperform the competitors in graph embedding tasks. Here, we consider both distortion setup, where the aim is to preserve distances, and ranking setup, where the relative order should be preserved. The proposed method effectively solves the problem and outperforms the competitors in both settings. We also perform an empirical analysis in a realistic information retrieval task, where we compare all spaces by incorporating them into DSSM. In this case, the proposed overlapping space consistently achieves nearly optimal results without any configuration tuning. This allows for reducing training time, which can be significant in large-scale applications.
翻译:在嵌入图纸、文本或图像等结构化数据时,各种非三角空间正在变得日益流行。在球形和双曲空间之后,提出了更通用的产品空间。然而,寻找产品空间的最佳配置是一个资源密集型程序,减少了该理念的实际适用性。我们推广了产品空间的概念,引入了一个没有配置搜索问题的重叠空间。主要的想法是允许不同类型空间(欧克利底、双曲线、球形)之间共享一组坐标。结果,参数优化自动学习最佳配置。此外,重叠空间允许更多压缩表达,因为其几何性更为复杂。我们的实验证实,重叠空间在图形嵌入任务中超过了竞争者。在这里,我们既考虑扭曲设置,目的是保持距离,又考虑排列顺序,以保持相对顺序。拟议的方法有效解决问题,也优于两种环境下的竞争者。我们还在现实的信息检索工作中进行了实证分析,我们通过将所有空间进行对比,从而几乎可以将这些空间进行空间与图像同步,从而可以使这些空间进行大规模调整,从而可以将这些空间与数据-S-S-M///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////