Conversational Recommender Systems (CRS) engage users in interactive dialogues to gather preferences and provide personalized recommendations. Traditionally, CRS rely on pre-defined attributes or expensive, domain-specific annotated datasets to guide conversations, which limits flexibility and adaptability across domains. In this work, we introduce SnipRec, a novel CRS that enhances dialogues and recommendations by extracting diverse expressions and preferences from user-generated content (UGC) like customer reviews. Using large language models, SnipRec maps user responses and UGC to concise snippets, which are used to generate clarification questions and retrieve relevant items. Our approach eliminates the need for domain-specific training, making it adaptable to new domains and effective without prior knowledge of user preferences. Extensive experiments on the Yelp dataset demonstrate the effectiveness of snippet-based representations against document and sentence-based representations. Additionally, SnipRec is able to improve Hits@10 by 0.25 over the course of five conversational turns, underscoring the efficiency of SnipRec in capturing user preferences through multi-turn conversations.
翻译:暂无翻译