We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free Variational Autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and L\'evy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces.
翻译:我们提出一种混合方法,通过将无模型变异自动计算器(VAE)与连续时间随机差分方程(SDE)驱动模型相结合,产生符合历史数据的无套利隐含波动(IV)表面。我们侧重于两种SDE模型:系统转换模型和L'evy添加过程。通过将历史表面投射到SDE模型参数的空间,我们获得了一个参数子空间的分布,该子空间忠实于我们随后用于培训VAE的数据。然后,通过对潜空的后方分布进行取样,解码以获得SDE模型参数,并最终将这些参数映射到IV表面,产生了无仲裁四面表面。