Recent works in spatiotemporal radiance fields can produce photorealistic free-viewpoint videos. However, they are inherently unsuitable for interactive streaming scenarios (e.g. video conferencing, telepresence) because have an inevitable lag even if the training is instantaneous. This is because these approaches consume videos and thus have to buffer chunks of frames (often seconds) before processing. In this work, we take a step towards interactive streaming via a frame-by-frame approach naturally free of lag. Conventional wisdom believes that per-frame NeRFs are impractical due to prohibitive training costs and storage. We break this belief by introducing Incremental Neural Videos (INV), a per-frame NeRF that is efficiently trained and streamable. We designed INV based on two insights: (1) Our main finding is that MLPs naturally partition themselves into Structure and Color Layers, which store structural and color/texture information respectively. (2) We leverage this property to retain and improve upon knowledge from previous frames, thus amortizing training across frames and reducing redundant learning. As a result, with negligible changes to NeRF, INV can achieve good qualities (>28.6db) in 8min/frame. It can also outperform prior SOTA in 19% less training time. Additionally, our Temporal Weight Compression reduces the per-frame size to 0.3MB/frame (6.6% of NeRF). More importantly, INV is free from buffer lag and is naturally fit for streaming. While this work does not achieve real-time training, it shows that incremental approaches like INV present new possibilities in interactive 3D streaming. Moreover, our discovery of natural information partition leads to a better understanding and manipulation of MLPs. Code and dataset will be released soon.


翻译:微小时空光亮场最近的作品可以产生光现实自由视野视频。 然而, 这些作品本质上不适合互动流景情景( 视频会议、 远程现场), 因为即使培训是即时的, 也不可避免地滞后。 这是因为这些方法消耗视频, 因而在处理前要缓冲框架块( 通常秒) 。 在这项工作中, 我们采取一个步骤, 通过一个框架- 框架方法实现互动流流流, 自然没有滞后。 传统智慧认为, 单框架 NERF 之所以不切实际, 是因为培训成本和存储过高。 我们通过引入递增神经视频( INV) 打破了这一信念, 因为它是一个互动流 NERF, 是一个高效培训和可流流。 我们根据两个洞察:(1) MNVP 自然将自己自然分割到结构( 通常秒) 和 颜色/ 图层图中。 (2) 我们利用这个属性来保存和完善先前框架的知识, 从而将跨框架的训练与多余的学习方法。 结果是, 与 NERF 相比, 直流流的 Reval- 直流的 Reval- dreal- dreal- dreal 将比值比值比值比值更低。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
12+阅读 · 2023年2月7日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员