Exemplar-based class-incremental learning (CIL) finetunes the model with all samples of new classes but few-shot exemplars of old classes in each incremental phase, where the "few-shot" abides by the limited memory budget. In this paper, we break this "few-shot" limit based on a simple yet surprisingly effective idea: compressing exemplars by downsampling non-discriminative pixels and saving "many-shot" compressed exemplars in the memory. Without needing any manual annotation, we achieve this compression by generating 0-1 masks on discriminative pixels from class activation maps (CAM). We propose an adaptive mask generation model called class-incremental masking (CIM) to explicitly resolve two difficulties of using CAM: 1) transforming the heatmaps of CAM to 0-1 masks with an arbitrary threshold leads to a trade-off between the coverage on discriminative pixels and the quantity of exemplars, as the total memory is fixed; and 2) optimal thresholds vary for different object classes, which is particularly obvious in the dynamic environment of CIL. We optimize the CIM model alternatively with the conventional CIL model through a bilevel optimization problem. We conduct extensive experiments on high-resolution CIL benchmarks including Food-101, ImageNet-100, and ImageNet-1000, and show that using the compressed exemplars by CIM can achieve a new state-of-the-art CIL accuracy, e.g., 4.8 percentage points higher than FOSTER on 10-Phase ImageNet-1000. Our code is available at https://github.com/xfflzl/CIM-CIL.
翻译:摘要:基于示例的类增量学习(CIL)通过在每个增量阶段的老类别中使用少量浅层而又具代表性的示例来微调模型,同时使用所有新类别的样本。在这种情况下,所谓“少量”符合有限的记忆预算。在本文中,我们基于一个简单而又惊人有效的想法突破了这个“少量”的限制:通过对非区分性像素进行下采样并在内存中保存“多样本”压缩实例。我们无需任何手动注释就可以实现此压缩,通过从类激活映射(CAM)生成在区分性像素上的0-1掩码来实现此压缩。我们提出了一个自适应掩码生成模型 - 类增量掩码(CIM)来明确解决使用CAM的两个难题:1)将CAM的热力图转换为任意阈值的0-1掩码会在区分性像素的覆盖范围和实例数量之间产生平衡,因为总内存是固定的;并且2)不同的目标类别具有不同的最佳阈值,这在CIL的动态环境中特别明显。我们通过双层优化问题交替优化CIM模型和传统CIL模型。我们在高分辨率CIL基准测试中进行了广泛的实验,包括Food-101,ImageNet-100和ImageNet-1000,并显示使用CIM压缩的实例可以实现新的最先进的CIL准确性,例如,在10个阶段的ImageNet-1000上比FOSTER高4.8个百分点。我们的代码可在https://github.com/xfflzl/CIM-CIL找到。