Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks' design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.
翻译:-
深度学习开发者来自不同的背景,例如医学、基因组学、金融和计算机科学。为了创建深度学习模型,他们必须学习和使用高级编程语言(如Python),因此需要处理相关设置并解决编程错误。本文介绍了DeepBlocks,一种可视化编程工具,允许深度学习开发人员设计、训练和评估模型,而不依赖于特定的编程语言。DeepBlocks的工作原理是基于典型模型结构:一系列可学习函数的序列,其排列定义了模型的特定特征。我们从5个参与者的形成性面试中得出了DeepBlocks的设计目标,并通过典型应用案例验证了工具的第一个实现。结果是有希望的,并显示开发者可以视觉化地设计复杂的深度学习架构。