Recent advances in 3D semantic segmentation with deep neural networks have shown remarkable success, with rapid performance increase on available datasets. However, current 3D semantic segmentation benchmarks contain only a small number of categories -- less than 30 for ScanNet and SemanticKITTI, for instance, which are not enough to reflect the diversity of real environments (e.g., semantic image understanding covers hundreds to thousands of classes). Thus, we propose to study a larger vocabulary for 3D semantic segmentation with a new extended benchmark on ScanNet data with 200 class categories, an order of magnitude more than previously studied. This large number of class categories also induces a large natural class imbalance, both of which are challenging for existing 3D semantic segmentation methods. To learn more robust 3D features in this context, we propose a language-driven pre-training method to encourage learned 3D features that might have limited training examples to lie close to their pre-trained text embeddings. Extensive experiments show that our approach consistently outperforms state-of-the-art 3D pre-training for 3D semantic segmentation on our proposed benchmark (+9% relative mIoU), including limited-data scenarios with +25% relative mIoU using only 5% annotations.


翻译:3D 语义分解与深层神经网络最近的进展显示了显著的成功,现有数据集的性能迅速提高。然而,目前的3D 语义分解基准仅包含少量类别 -- -- 例如,扫描网和SemanticKITTI的类别不到30个,不足以反映真实环境的多样性(例如,语义图像理解涵盖数百至数千类)。因此,我们提议研究3D 语义分解的更大型词汇表,在ScANNet数据上采用新的扩展基准,即200类的扫描网数据,其数量比以前研究的要大。这种数量众多的类别基准还造成大量的自然类不平衡,对现有的3D 语义分解方法都是挑战的。要学习更健全的3D特性,我们建议采用一种语言驱动的训练前方法,鼓励学习与经过预先培训的文本嵌入的仅有有限的培训实例。广泛的实验表明,我们的方法始终超越了3D 前3D 3D 级分解分析的状态,包括仅使用3D% 的相对图解解的3D 仅使用我们提议的5D 的Mmanticalimal 的模型的MI 。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员