6D object pose estimation aims to infer the relative pose between the object and the camera using a single image or multiple images. Most works have focused on predicting the object pose without associated uncertainty under occlusion and structural ambiguity (symmetricity). However, these works demand prior information about shape attributes, and this condition is hardly satisfied in reality; even asymmetric objects may be symmetric under the viewpoint change. In addition, acquiring and fusing diverse sensor data is challenging when extending them to robotics applications. Tackling these limitations, we present an ambiguity-aware 6D object pose estimation network, PrimA6D++, as a generic uncertainty prediction method. The major challenges in pose estimation, such as occlusion and symmetry, can be handled in a generic manner based on the measured ambiguity of the prediction. Specifically, we devise a network to reconstruct the three rotation axis primitive images of a target object and predict the underlying uncertainty along each primitive axis. Leveraging the estimated uncertainty, we then optimize multi-object poses using visual measurements and camera poses by treating it as an object SLAM problem. The proposed method shows a significant performance improvement in T-LESS and YCB-Video datasets. We further demonstrate real-time scene recognition capability for visually-assisted robot manipulation. Our code and supplementary materials are available at https://github.com/rpmsnu/PrimA6D.
翻译:6D对象的估算旨在用单一图像或多重图像推断物体与相机之间的相对构成。大多数工程都侧重于预测物体在封闭性和结构模糊性(对称性)下没有相关的不确定性,但是,这些工程要求事先提供关于形状属性的信息,而这一条件在现实中几乎无法满足;在观点变化下,甚至不对称物体也可能是对称的。此外,在将目标对象的三轴原始图像扩展至机器人应用时,获取和使用不同的传感器数据具有挑战性。处理这些限制,我们提出了一个模糊的6D对象构成估计网络PrimA6D++,作为一种通用的不确定性预测方法。根据对形状属性和结构模糊性(对称性),可以以通用的方式处理这些物体构成的不确定性。具体地说,我们设计了一个网络来重建目标对象的三轴原始图像的旋转轴,并预测每个原始轴的不确定性。利用这些估计的不确定性,我们然后通过将视觉测量和摄像来优化多球构成,将其作为一个目标SLA6D6++,作为一般的不确定性预测方法。在设定的预测方面的主要挑战,根据对隐含不确定性和对等的预测,根据对等的隐性估算,可以根据对等的预测,可以根据对准性和对准性估算的预测,根据对准性和对准性和对准性估算,根据对准性估算,根据测量和对准性估算,根据对准性估算的预测性估算的预测性估算性估算性估算的测算,可以用的计算方法,可以用一般的计算,可以以一般的计算,根据对准性估算性估算,根据测算,根据测算,根据测算,根据测算,根据对准性能的测算,根据测算,根据测算,根据测算法的精确性测算,可以展示我们的精确性能的精确性能的精确性能的精确性能的精确性能的精确性能的模型的数据,对准性能的精确性能数据,对准性能数据/CFLA.A.A/CFLA.A/CFA/CSBD.A/CFA/CSLM/CFA/CSBSA/CFA/CSBD.A/CSA/CSA/CSA/CSA/C