In the context of state-space models, skeleton-based smoothing algorithms rely on a backward sampling step which by default has a $\mathcal O(N^2)$ complexity (where $N$ is the number of particles). Existing improvements in the literature are unsatisfactory: a popular rejection sampling -- based approach, as we shall show, might lead to badly behaved execution time; another rejection sampler with stopping lacks complexity analysis; yet another MCMC-inspired algorithm comes with no stability guarantee. We provide several results that close these gaps. In particular, we prove a novel non-asymptotic stability theorem, thus enabling smoothing with truly linear complexity and adequate theoretical justification. We propose a general framework which unites most skeleton-based smoothing algorithms in the literature and allows to simultaneously prove their convergence and stability, both in online and offline contexts. Furthermore, we derive, as a special case of that framework, a new coupling-based smoothing algorithm applicable to models with intractable transition densities. We elaborate practical recommendations and confirm those with numerical experiments.


翻译:在州-空间模型方面,基于骨架的平滑算法依赖于一个落后的取样步骤,该步骤默认具有1美元=mathcal O(N2)2美元的复杂性(其中美元为粒子数量 ) 。 文献的现有改进不尽如人意:如我们所显示的,以大众拒绝抽样为基础的方法可能导致执行时间不善;另一个停止的拒绝采样者缺乏复杂性分析;另一个以MCMC为主的算法没有稳定性保证。我们提供了弥合这些差距的若干结果。我们特别提供了一个新的非被动稳定的理论,从而能够以真正线性的复杂性和充分的理论理由来平滑。我们提出了一个总的框架,将文献中基于骨架的平滑算法结合在一起,并同时在网上和离线环境中同时证明它们的趋同性和稳定性。此外,作为这一框架的一个特殊案例,我们提出了一种新的基于组合的平滑算算法,适用于具有棘手过渡密度的模型。我们提出了切实可行的建议,并证实了那些有数字实验的建议。</s>

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员