In the context of state-space models, skeleton-based smoothing algorithms rely on a backward sampling step which by default has a $\mathcal O(N^2)$ complexity (where $N$ is the number of particles). Existing improvements in the literature are unsatisfactory: a popular rejection sampling -- based approach, as we shall show, might lead to badly behaved execution time; another rejection sampler with stopping lacks complexity analysis; yet another MCMC-inspired algorithm comes with no stability guarantee. We provide several results that close these gaps. In particular, we prove a novel non-asymptotic stability theorem, thus enabling smoothing with truly linear complexity and adequate theoretical justification. We propose a general framework which unites most skeleton-based smoothing algorithms in the literature and allows to simultaneously prove their convergence and stability, both in online and offline contexts. Furthermore, we derive, as a special case of that framework, a new coupling-based smoothing algorithm applicable to models with intractable transition densities. We elaborate practical recommendations and confirm those with numerical experiments.
翻译:在州-空间模型方面,基于骨架的平滑算法依赖于一个落后的取样步骤,该步骤默认具有1美元=mathcal O(N2)2美元的复杂性(其中美元为粒子数量 ) 。 文献的现有改进不尽如人意:如我们所显示的,以大众拒绝抽样为基础的方法可能导致执行时间不善;另一个停止的拒绝采样者缺乏复杂性分析;另一个以MCMC为主的算法没有稳定性保证。我们提供了弥合这些差距的若干结果。我们特别提供了一个新的非被动稳定的理论,从而能够以真正线性的复杂性和充分的理论理由来平滑。我们提出了一个总的框架,将文献中基于骨架的平滑算法结合在一起,并同时在网上和离线环境中同时证明它们的趋同性和稳定性。此外,作为这一框架的一个特殊案例,我们提出了一种新的基于组合的平滑算算法,适用于具有棘手过渡密度的模型。我们提出了切实可行的建议,并证实了那些有数字实验的建议。</s>