Conservative inference is a major concern in simulation-based inference. It has been shown that commonly used algorithms can produce overconfident posterior approximations. Balancing has empirically proven to be an effective way to mitigate this issue. However, its application remains limited to neural ratio estimation. In this work, we extend balancing to any algorithm that provides a posterior density. In particular, we introduce a balanced version of both neural posterior estimation and contrastive neural ratio estimation. We show empirically that the balanced versions tend to produce conservative posterior approximations on a wide variety of benchmarks. In addition, we provide an alternative interpretation of the balancing condition in terms of the $\chi^2$ divergence.
翻译:保守推断是模拟推断中的一个主要问题。已经证明,常用算法可能产生过于自信的后验逼近。平衡在减轻这个问题方面已经被实证证明是一种有效的方法。然而,其应用仍仅限于神经比率估计。在这项工作中,我们将平衡扩展到任何提供后验密度的算法。特别地,我们引入了神经后验估计和对比神经比率估计的平衡版本。我们在广泛的基准测试中展示了平衡版本倾向于产生保守的后验逼近。此外,我们提供了一个关于 $\chi^2$ 散度的平衡条件的替代解释。