项目名称: 基于变分收敛技术的平衡问题研究
项目编号: No.11201042
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 胡容
作者单位: 成都信息工程学院
项目金额: 22万元
中文摘要: 本项目利用变分收敛方法对平衡问题展开相关研究。我们致力于把优化问题的广义epsilon-拟解概念推广到平衡问题,研究这类近似解集的性质以及与精确解集的关系;利用A. Jofre和R.J.B. Wets提出的lopsided收敛性概念研究M. Bianchi等人所建立的二元函数的Ekeland变分原理的稳定性;利用二元函数序列的lopsided收敛性和约束集合序列的Kuratowski-Painleve收敛性定义引入并研究基于广义epsilon-拟解的平衡问题的适定性;研究G. Mastroeni等人建立的平衡问题误差界的稳定性。本项目的研究不仅可以丰富和发展平衡问题的新理论与方法,而且可以为产生于交通运输、资源分配以及工程管理等领域中的大量决策问题的求解提供潜在的理论工具。
中文关键词: 平衡问题;优化问题;广义Minty似变分不等式;分裂逆变风不等式;序补系统问题
英文摘要: In this project we study equilibrium problems via variational convergence. (a) We extend the concept of generalized epsilon-quasi-solution introduced for optimization problems to equilibrium problems and study the properties of generalized epsilon-quasi-solution set and its relations with the exact solution set. (b) By applying the lopsided convergence due to A. Jofre and R.J.B. Wets, we investigate stability of the Ekeland's variational principle introduced by M. Bianchi et al. for bivariate functions. (c) We introduce and study the well-posedness involving generalized epsilon-quasi-solution for equilibrium problems, which is based on the lopsided convergence of sequences of bivariate functions and the Kuratowski-Painleve convergence of sequences of constraint sets. (d) We study the stability of error bounds in the sense of G. Mastroeni for equilibrium problems. The study of this project is important because it yields not only new theories and methods for equilibrium problems but also provides potential tools for solving practical problems arising in transportation, resource allocation and engineering management, etc.
英文关键词: Equilibrium Problem;Optimization Problem;Generalized Minty Prevariational Inequality;Split Inverse Variational Inequality;System of Order Complementarity Problems