Estimation of a dynamical system's latent state subject to sensor noise and model inaccuracies remains a critical yet difficult problem in robotics. While Kalman filters provide the optimal solution in the least squared sense for linear and Gaussian noise problems, the general nonlinear and non-Gaussian noise case is significantly more complicated, typically relying on sampling strategies that are limited to low-dimensional state spaces. In this paper we devise a general inference procedure for filtering of nonlinear, non-Gaussian dynamical systems that exploits the differentiability of both the update and prediction models to scale to higher dimensional spaces. Our method, Stein particle filter, can be seen as a deterministic flow of particles, embedded in a reproducing kernel Hilbert space, from an initial state to the desirable posterior. The particles evolve jointly to conform to a posterior approximation while interacting with each other through a repulsive force. We evaluate the method in simulation and in complex localization tasks while comparing it to sequential Monte Carlo solutions.
翻译:对动态系统受传感器噪音和模型不准确影响的潜伏状态进行估计,仍然是机器人中一个关键但困难的问题。虽然卡尔曼过滤器为线性和高西噪音问题提供了最不平方的优化解决方案,但一般的非线性和非加西语噪音案例则更为复杂得多,通常依赖限于低维状态空间的取样战略。在本文件中,我们设计了一个一般推论程序,用于过滤非线性和非加西语动态系统,利用更新和预测模型的可变性将范围扩大到更高维度空间。我们的方法,即施泰因粒子过滤器,可以被视为粒子的确定性流动,嵌入一个再生产内核的Hilbert空间,从初始状态到理想的外表层空间。粒子共同演变成符合远光线近光,同时通过反射力相互作用。我们评估模拟和复杂本地化任务的方法,同时将其与相继的蒙特卡洛解决方案进行比较。