Recent work has shown that Binarized Neural Networks (BNNs) are able to greatly reduce computational costs and memory footprints, facilitating model deployment on resource-constrained devices. However, in comparison to their full-precision counterparts, BNNs suffer from severe accuracy degradation. Research aiming to reduce this accuracy gap has thus far largely focused on specific network architectures with few or no 1x1 convolutional layers, for which standard binarization methods do not work well. Because 1x1 convolutions are common in the design of modern architectures (e.g. GoogleNet, ResNet, DenseNet), it is crucial to develop a method to binarize them effectively for BNNs to be more widely adopted. In this work, we propose an "Elastic-Link" (EL) module to enrich information flow within a BNN by adaptively adding real-valued input features to the subsequent convolutional output features. The proposed EL module is easily implemented and can be used in conjunction with other methods for BNNs. We demonstrate that adding EL to BNNs produces a significant improvement on the challenging large-scale ImageNet dataset. For example, we raise the top-1 accuracy of binarized ResNet26 from 57.9% to 64.0%. EL also aids convergence in the training of binarized MobileNet, for which a top-1 accuracy of 56.4% is achieved. Finally, with the integration of ReActNet, it yields a new state-of-the-art result of 71.9% top-1 accuracy.


翻译:最近的工作表明,Binalization NealNets(BNN)能够大幅降低计算成本和记忆足迹,便利于在资源限制装置上部署模型。然而,与完全精准的对口相比,BNNS面临严重的精确性退化。迄今为止,旨在缩小这一准确性差距的研究主要侧重于仅有或没有1x1的螺旋层的具体网络结构,对于这些结构,标准二进制方法不起作用。由于1x1连动在现代结构的设计中很常见(例如GoogleNet、ResNet、DenseNet),因此必须开发一种方法,使这些网络在不受资源限制的装置上被有效地采用。在这项工作中,我们提议了一个“Elastistic-Link”(EL)模块,通过在随后的螺旋输出特性中适应性地添加真正有价值的输入特性来丰富BNNW内部的信息流。拟议的EL模块很容易实施,并且可以与其他方法一起使用。我们证明,将ELserf(e)到BNNSs,使BL)的顶级网络的精准化方法得以有效地将BNENet的精准化,使56-IL值升级升级升级为最终的精准,从而提升的精准性将57的精准性图像的精度升级的精准。例中的最后的精准性将精准。

1
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
13+阅读 · 2021年6月14日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
3+阅读 · 2018年8月17日
Top
微信扫码咨询专知VIP会员