This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 2019], where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsche's method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal $L^2(L^2)$-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
翻译:文章涉及时间依赖域的斯托克斯方程式在欧莱安坐标框架内的离散问题。 我们的工作可视为Lehrenfeld & Olshandskii [ESAIM: M2AN, 53(2):585-614, 2019] 最近一篇论文的延伸, 该论文为移动域的抛物线方程式研究了BDF型时间步骤方案。 对于空间离散, 与尼采强制划定边界条件的方法一起应用了几何不相宜的有限要素离散。 先前时间步骤的解决方案的实际未定义值通过所谓的幽灵惩罚固定法被隐含地扩展。 我们对空间和时间的离散错误进行了完全的先验错误分析, 包括最优的 $L2 (L2) $norm 误差。 最后, 理论结果以数字示例作为佐证。