We are concerned with random ordinary differential equations (RODEs). Our main question of interest is how uncertainties in system parameters propagate through the possibly highly nonlinear dynamical system and affect the system's bifurcation behavior. We come up with a methodology to determine the probability of the occurrence of different types of bifurcations based on the probability distribution of the input parameters. In a first step, we reduce the system's behavior to the dynamics on its center manifold. We thereby still capture the major qualitative behavior of the RODEs. In a second step, we analyze the reduced RODEs and quantify the probability of the occurrence of different types of bifurcations based on the (nonlinear) functional appearance of uncertain parameters. To realize this major step, we present three approaches: an analytical one, where the probability can be calculated explicitly based on Mellin transformation and inversion, a semi-analytical one consisting of a combination of the analytical approach with a moment-based numerical estimation procedure, and a particular sampling-based approach using unscented transformation. We complement our new methodology with various numerical examples.


翻译:我们关心的是随机的普通差异方程式。 我们关心的主要问题是,系统参数的不确定性是如何通过可能高度非线性动态系统传播的,如何影响系统的两侧行为。 我们想出一种方法,根据输入参数的概率分布确定不同类型两侧的概率。 第一步,我们将系统的行为降低到其中心方形的动态。 因此,我们仍能捕捉到RODE的主要定性行为。 第二步,我们根据(非线性)功能性参数的外观,分析减少的RODE并量化不同类型两端的概率。为了实现这一重大步骤,我们提出了三种方法:一种分析方法,其中的概率可以明确根据Mellin的变换和变换来计算,一种半分析方法,包括将分析方法与基于瞬间的数字估计程序相结合,以及一种使用非点化变法的抽样方法。我们用各种数字实例补充了我们的新方法。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【智能供应链】AI和IoT驱动的智能供应链
产业智能官
9+阅读 · 2020年7月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
看完后,别再说自己不懂用户画像了
R语言中文社区
15+阅读 · 2017年8月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【智能供应链】AI和IoT驱动的智能供应链
产业智能官
9+阅读 · 2020年7月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
看完后,别再说自己不懂用户画像了
R语言中文社区
15+阅读 · 2017年8月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员