The Mat{\'e}rn family of isotropic covariance functions has been central to the theoretical development and application of statistical models for geospatial data. For global data defined over the whole sphere representing planet Earth, the natural distance between any two locations is the great circle distance. In this setting, the Mat{\'e}rn family of covariance functions has a restriction on the smoothness parameter, making it an unappealing choice to model smooth data. Finding a suitable analogue for modelling data on the sphere is still an open problem. This paper proposes a new family of isotropic covariance functions for random fields defined over the sphere. The proposed family has a parameter that indexes the mean square differentiability of the corresponding Gaussian field, and allows for any admissible range of fractal dimension. Our simulation study mimics the fixed domain asymptotic setting, which is the most natural regime for sampling on a closed and bounded set. As expected, our results support the analogous results (under the same asymptotic scheme) for planar processes that not all parameters can be estimated consistently. We apply the proposed model to a dataset of precipitable water content over a large portion of the Earth, and show that the model gives more precise predictions of the underlying process at unsampled locations than does the Mat{\'e}rn model using chordal distances.
翻译:等离子共变函数组对于地理空间数据统计模型的理论开发和应用至关重要。 对于代表地球的整个球体上定义的全球数据来说, 任何两个位置之间的自然距离是圆形宽距。 在这种背景下, 共差函数组对平滑参数有一定的限制, 使得模拟平滑数据模型是最自然的选择。 寻找适合模拟球体数据模型的类似模型仍然是一个尚未解决的问题 。 本文建议对球体上定义的随机字段建立一个新的异位共变函数组。 所拟议的组有一个参数, 将相应的高山字段的平均正方形可变性指数化, 并允许任何可接受的分形尺寸范围。 我们的模拟研究模拟研究模拟了固定域的静态设置, 这是在封闭和封闭的数据集中进行抽样的最自然的系统 。 我们的结果支持了非所有参数都无法持续估算的平流场图进程的类似结果 。 我们应用了这个模型的模型, 将一个更精确的模型的模型 展示了一个比大的地球模型的模型 的预置位置 。