This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
翻译:本文建议弗里德里希人学习作为一种新型的深层次学习方法,它能够通过细式配方来了解PDE的薄弱解决方案,从而将PDE问题转化为微式最大优化问题,从而找出薄弱的解决方案。“弗里德里希人学习”的名称是强调我们的学习战略和Friedrichs关于PDE对称系统的理论之间的密切关系。弱式配方的薄弱解决方案和测试功能以无网状方式作为深层神经网络的参数,这些网络将进行更新,以便分别接近弱式解决方案和最佳测试功能的最佳解决方案网络。广泛的数字结果表明,我们的无网状方法可以为不同层面的常规和非正规领域界定的广泛PDE提供合理而良好的解决方案,在这些方面,传统的数字方法,如有限差异方法和有限元素方法,可能难以使用或难以使用。