In this work we propose a natural discretization of the second boundary condition for the Monge-Ampere equation of geometric optics and optimal transport. For the discretization of the differential operator, we use a discrete analogue of the subdifferential. Existence, unicity and stability of the solutions to the discrete problem are established. Convergence results to the continuous problem are given.
翻译:在这项工作中,我们建议对蒙古-安培方程式的第二个边界条件进行自然分解,即几何光学和最佳运输。对于差分操作员的分解,我们使用一个次分解的离散类比。对离散问题的解决办法的存在、一致性和稳定性得到了确定。对连续问题的结果进行了一致。