Implementing Decentralized Gradient Descent (DGD) in wireless systems is challenging due to noise, fading, and limited bandwidth, necessitating topology awareness, transmission scheduling, and the acquisition of channel state information (CSI) to mitigate interference and maintain reliable communications. These operations may result in substantial signaling overhead and scalability challenges in large networks lacking central coordination. This paper introduces a scalable DGD algorithm that eliminates the need for scheduling, topology information, or CSI (both average and instantaneous). At its core is a Non-Coherent Over-The-Air (NCOTA) consensus scheme that exploits a noisy energy superposition property of wireless channels. Nodes encode their local optimization signals into energy levels within an OFDM frame and transmit simultaneously, without coordination. The key insight is that the received energy equals, on average, the sum of the energies of the transmitted signals, scaled by their respective average channel gains, akin to a consensus step. This property enables unbiased consensus estimation, utilizing average channel gains as mixing weights, thereby removing the need for their explicit design or for CSI. Introducing a consensus stepsize mitigates consensus estimation errors due to energy fluctuations around their expected values. For strongly-convex problems, it is shown that the expected squared distance between the local and globally optimum models vanishes at a rate of $\mathcal O(1/\sqrt{k})$ after $k$ iterations, with suitable decreasing learning and consensus stepsizes. Extensions accommodate a broad class of fading models and frequency-selective channels. Numerical experiments on image classification demonstrate faster convergence in terms of running time compared to state-of-the-art schemes, especially in dense network scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员